JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2017-2018 B.Sc. Semester-I (Honours) (CBCS)

Name of Faculty Members	Topic (From 15 th July 2017 to 16 th September 2017)	Topic (From 31 st October 2017 to 12 December 2017)	2 th
Dr. S. Manna Associate Professor Head Of The	C1 (H) Unit-IV: Differential Equation Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors.	 C1 (H) Unit-IV: Differential Equation Separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations 	on
Department	GE-1 Unit-IV: Differential Equation Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors.	UGE-1Unit-IV: DifferentialJSeparable equations and equationsASeparable equations and equationsAand Bernoulli equations, specialintegrating factors andtransformations.	
Sri. S. Sarkar Assistant Professor	 C1(H) Unit-I: Calculus Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of type e^{ax+b}sinx, e^{ax+b}cosx, (ax+b)ⁿsinx, (ax+b)ⁿcosx, concavity and inflection points, envelopes, asymptotes. C2(H) Unit-I: Algebra Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, transformation of equation. 	$\begin{array}{c c} \textbf{C1(H) Unit-I: Calculus} \\ Curve tracing in cartesian \\ coordinates, tracing in polar \\ coordinates of standard curves, \\ L'Hospital's rule, applications in \\ business, economics and life \\ sciences. \\ \hline \textbf{C2(H) Unit-I: Algebra} \\ Theory of equations: Descartes rule \\ of signs, cubic and biquadratic \\ equation. \\ Inequality: The inequality involving \\ AM \geq GM \geq HM, Cauchy-Schwartz \\ inequality. \\ \end{array}$	g
	GE-I Unit-I: CalculusHyperbolic functions, higher orderderivatives, Leibnitz rule and itsapplications to problems of type $e^{ax+b}sinx$, $e^{ax+b}cosx$, $(ax+b)^nsinx$, $(ax+b)^ncosx$,concavity and inflection points,envelopes, asymptotes.C1(H) Unit-II: Calculus	OGE-I Unit-I: Calculus Curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.C1(H) Unit-II: Calculus	
	Reduction formulae, derivations and illustrations of reduction formulae of the type $\beta \sin nx dx$, $\beta \cosh x dx$, $\beta \tan nx dx$, $\beta \sec nx dx$, $\beta (\log x)^n dx$, $\beta \sin^n x \sin^m x dx$, parametric equations, parameterizing a curve.	 Arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface o revolution, techniques of sketching conics. U 	of

Sri. A. De Assistant Professor	C2(H) Unit-III: Algebra Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence. C2(H) Unit-IV: Algebra Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices.	J A V A	C2(H) Unit- IV: Algebra Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.
	GE-1 Unit-III: Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids,	C A T I	GE-1 Unit-III: Geometry Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid.
	C1(H) Unit-III: Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids.	I O N	C1(H) Unit-III: Geometry Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid.
Sri. S. Roy Assistant Professor	C2(H) Unit-II: Algebra Equivalence relations. Functions, composition of functions, Invertible functions, one to one correspondence and cardinality of a set. Well-ordering property of positive integers, division algorithm, divisibility and Euclidean algorithm.		C2(H) Unit-II: Algebra Congruence relation between integers. Principles of Mathematical induction, statement of Fundamental Theorem of Arithmetic.
	GE-I Unit-II: Calculus Reduction formulae, derivations and illustrations of reduction formulae of the type $\beta \sin nx dx$, $\beta \cos x dx$, $\beta \tan nx dx$, $\beta \sec nx dx$, $\beta (\log x)^n dx$, $\beta \sin^n x \sin^m x dx$, parametric equations, parameterizing a curve.		GE-I Unit-II : Calculus Arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution, techniques of sketching conics.
	1 st Internal Assessment: 2 nd week of September 2017 PTM-3 rd Week of September		2 nd Internal Assessment: Last week of November 2017 Students' Seminar-3 rd Week of November

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2017-2018 B.Sc. Semester-II(Honours) (CBCS)

Name of the Faculty Members	Topics: From 2 nd January 2018 to 6 th May 2018
Dr. S. Manna	C4(H) Unit-IV: Vector Calculus
Associate Professor	Triple product, introduction to vector functions, operations
Head of The Department	with vector-valued functions, limits and continuity of vector
	functions, differentiation and integration of vector functions.
	C3(H) Unit-I: Real Analysis
	Review of algebraic and order properties of R, ε-
	neighborhood of a point in R. Idea of countable sets,
	uncountable sets and uncountability of R. Bounded above
	sets, bounded below sets, bounded sets, unbounded sets.
	Suprema and infima. Completeness property of R and its
	equivalent properties. The Archimedean property, density of
Sri. S. Sarkar	rational (and Irrational) numbers in R, intervals. Limit points
Assistant Professor	of a set, isolated points, open set, closed set, derived set,
	illustrations of Bolzano-Weierstrass theorem for sets, compact
	sets in R, Heine-Borel Theorem.
	GE-2 Unit-III: Algebra
	Systems of linear equations, row reduction and echelon forms,
	vector equations, the matrix equation Ax=b, solution sets of
	linear systems, applications of linear systems, linear
	independence.
	C3(H) Unit-II: Real Analysis
	Sequences, bounded sequence, convergent sequence, limit of
	a sequence, liminf, lim sup. Limit theorems. Monotone
	sequences, monotone convergence theorem. Subsequences,
	divergence criteria. Monotone subsequence theorem
	(statement only), Bolzano Weierstrass theorem for sequences.
	Cauchy sequence, Cauchy's convergence criterion.
	C3(H) Unit-III: Real Analysis
	Infinite series, convergence and divergence of infinite series,
	Cauchy criterion, tests for convergence: comparison test, limit
Sri. A. De	comparison test, ratio test, Cauchy's nth root test, integral test.
Assistant professor	Alternating series, Leibniz test. Absolute and conditional
_	convergence.
	GE-2 Unit-I : Algebra
	Polar representation of complex numbers, nth roots of unity,
	De Moivre's theorem for rational indices and its applications.
	Theory of equations: Relation between roots and coefficients,
	transformation of equation, Descartes rule of signs, cubic and
	biquadratic equation.
	-

	Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-
	Schwartz inequality.
	GE-2 Unit-IV: Algebra
	8
	Introduction to linear transformations, matrix of a linear
	transformation, inverse of a matrix, characterizations of
	invertible matrices. Subspaces of Rn, dimension of subspaces
	of Rn, rank of a matrix, Eigen values, eigen vectors and
	characteristic equation of a matrix. Cayley-Hamilton theorem
	and its use in finding the inverse of a matrix.
	C4(H) Unit-I: Differential Equations
	Lipschitz condition and Picard's Theorem (Statement only).
	General solution of homogeneous equation of second order,
	principle of super position for homogeneous equation,
	Wronskian: its properties and applications, Linear
	homogeneous and non-homogeneous equations of higher
	order with constant coefficients, Euler's equation, method of
	undetermined coefficients, method of variation of parameters.
	C4(H) Unit-II: Differential Equations
	Systems of linear differential equations, types of linear
	systems, differential operators, an operator method for linear
	systems with constant coefficients,
	Basic Theory of linear systems in normal form, homogeneous
	linear systems with constant coefficients: Two Equations in
	two unknown functions.
	C4(H) Unit-III: Differential Equations
	Equilibrium points, Interpretation of the phase plane Power
Sri. S. Roy	series solution of a differential equation about an ordinary
Assistant Professor	point, solution about a regular singular point.
	GE-2 Unit-II: Algebra
	Equivalence relations. Functions, composition of functions,
	Invertible functions, one to one correspondence and
	cardinality of a set. Well-ordering property of positive
	integers, division algorithm, divisibility and Euclidean
	algorithm. Congruence relation between integers. Principles
	of Mathematical induction, statement of Fundamental
	Theorem of Arithmetic.
	1 st Internal Assessment: 2 nd Week of March 2018
	2 nd Internal Assessment: Last Week of April 2018
	Students' Seminar-3 rd Week of March

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2017-2018 B.Sc. Part-II (Honours)

Name of Faculty Members	Topic(From 10 th July 2017 to 16 th September 2017)	Topic(From 31 st October 2017 to 26 th April 2018)
Members Members	September 2017) Paper-III, Group-A: Vector Analysis:- Scalar triple products and vector triple products, product of four vectors, reciprocal sets of vectors. Application in mechanics, geometry and trigonometry. Vector equations of straight lines and planes. Volume of a tetrahedron, shortest distance between two skew lines. Ordinary derivative of vector. pace curves, parametric equations. Continuity and differentiability. Partial derivatives of vectors. Differential of vectors. Elements of differential geometry. Frenet Srenet's formula. Application of vector calculus in mechanics particularly to planetary motions. Paper-V, Group-B:Metric Space:- Definition and examples of metric spaces such as R ⁿ (n ≥ 1), l _∞ , l _p , C[a,b]. Open and closed ball, Neighborhoods of a point, open set, closed set (defined as a complement of an open set). Union and intersection of open and closed sets, limit point of a set, interior point and interior, closure and boundary of a set, boundary of a set, elementary properties of interior, closure and boundary of a set, <td< th=""><th>April 2018)Paper-III, Group-A: Vector Analysis :- Gradient, divergence and rot (or curl) of a vector. The vector differential operator ∇, gradient, divergence, rot (or curl). Geometrical and physical interpretations. Formulae involving ∇. Invariance. Vector integral calculus: Ordinary integrals of vectors. Line integrals. Surface integrals. Volume integrals. Green's theorem. Statement and verification of the divergence theorem of Gauss and Stoke's theorem. Related integral theorems, applications.VPaper-V, Group-B:Metric Space:- Sub-space of a metric space, sequence, convergence sequence, Cauchy sequences. Complete and incomplete metric spaces completeness of R^n ($n \ge 1$), C[a,b]. Cantor's intersection theoremATIONPaper-V, Group-C:Complex Analysis:-Complex functions: Limit, Continuity and differentiability of complex functions. Cauchy - Riemann Equations in Cartesian and Polar forms, Analytic functions. Sufficient conditions of Differentiability (Statement only),</br></br></br></br></th></td<>	April 2018)Paper-III, Group-A: Vector Analysis :- Gradient, divergence and rot (or curl) of a vector. The vector differential operator ∇ , gradient, divergence, rot (or curl). Geometrical and physical interpretations. Formulae involving ∇ . Invariance. Vector integral calculus: Ordinary integrals of vectors. Line integrals. Surface integrals. Volume integrals. Green's theorem. Statement and verification of the divergence theorem of Gauss and Stoke's theorem. Related integral theorems, applications.VPaper-V, Group-B:Metric Space:-
		Harmonic function. Conjugate harmonic function, statement of Milne's Method.

	Paper-V, Group-A		Paper-V, Group-A
Sri. S. Sarkar Assistant Professor	Paper-V, Group-A:Real Analysis – II:-Riemann theory of integration: Partitionand refinement of partition of a closed andbounded interval, Upper Darboux sumand Lower Darboux sum and associatedresults, upper integral and lower integral,Darbbux theorem, Darboux definition ofintegration over a closed and boundedinterval, Riemann's definition ofintegrability, equivalence of Darbouxdefinition of integrability (statementonly), necessary and sufficient conditionsof Riemann integrability, Integrability ofcontinuous, monotonic and piecewisecontinuous functions with finite numberof points of discontinuities, infinitenumber of points of discontinuities havingfinite number of limit points, integrabilityof sum, scalar multiple, product, quotient,modulus of integrable functions.Functions defined by integrals, theircontinuity and differentiability,Fundamental theorem of integral calculus.First mean value theorem (Bonnet andWeierstrass's form (no proof of integralcalculus. Definition of log x as an integraland deduction of simple properties.Paper-V, Group-D:Tensor Calculus:-Spaces of n dimension, Transformation ofco-ordinates, Contravariant and covariantvectors. Scalar invariants, contravariant,covariant and mixed tensor. TheKroneckar delta. Symmetric and Skew-symmetric tensor.Addition, subtraction, outer product,	P U J A V A C A T I O N	Paper-V, Group-A:Real Analysis – II:- Improper integral: Necessary and sufficient condition for convergence of improper integral(for unbounded function and unbounded range of integration), comparison and limit test for convergence, absolute and non- absolute convergence, Abel's and Dirichlet's test for convergence of the integral of a product(statement only), Beta and Gamma functions, their convergence, relation and simple properties. Differentiation and integration w.r.to parameter under integral sign, statement of relevant theorem. Multiple integral: Concept of upper sum, lower sum, upper integral, lower integral and Double integral (no rigorous statement is needed), statement of existence theorem for continuous function, change of order of integration, Triple integral, change of variables in double and triple integral (problem only), determination of volume and surface area by multiple integral (problem only).Concept of implicit function: statement and simple application of implicit function theorem for two variables, differentiation of implicit function. Mean value and Taylor's theorem for function of two variables. Maxima and minima of functions of two or more variables. Lagrange's method of undetermined multipliers (up to four variables), concept of saddle point. Paper-V, Group-D:Tensor Calculus:- The line element and the metric tensor; Riemannian space, conjugate or reciprocal tensor. Christoffel symbols and their laws transformation, covariant differentiation of vectors and tensors, covariant differentiations of sum and products.

	contraction, inner multiplication, Quotient		Divergence of a vector, Laplacian of a
	law.		scalar invariant.
			Curvature tensors and Ricci tensor,
			covariant curvature tensor.
	Paper-III, Group-C:Linear		Paper-III, Group-C:Linear
	Programming and Game Theory:-		Programming and Game Theory :-
	Inequations, formation of problems from	Ρ	Theory of simplex method, feasibility
	daily life involving inequations, slack and		and optimality conditions, The
	surplus variables, definition of L.P.P.,	U	algorithm, Unbounded solution,
	canonical, standard and matrix form of	U	alternative optimal. Two phase method,
	L.P.P., solution of L.P.P by graphical	J	Charne's Big-M method, degeneracy in
	method. Basic solutions, feasible solution	U	L.P.P. and its resolution. Cycling
	and basic feasible solutions, degenerate	A	(definition only). Duality, The dual of
	and non-degenerate B.F.S., vectors, bases		the dual is primal, weak and strong
	and dimension, convex sets, convex hull,		duality theorems, solution of the dual
	convex cone, convex polyhedral and		(primal) from the simplex table of the
	simplex, hyperplane, polytope, polyhedral,		primal (dual).
	separating and supporting hyperplane. The		
	collection of all feasible solution of a		Transportation and assignment
	L.P.P. constitutes a convex set whose		problems: Formulation of balanced and
	extreme point correspond to its B.F.S. The		unbalanced problems and their optimal
	objective function has its optimum value		solutions travelling salesman problems
	at an extreme point of the convex		and their optimal solutions.
	polyhedron generated by the set of		
	feasible solutions, a B.F.S. to a L.P.P.	\mathbf{V}	Game theory: Concept of game
	corresponds to an extreme point of the	V	problems, rectangular game. Pure
	convex set of feasible solutions, if the	Α	strategy and mixed strategy, saddle
	objective function assumes its optimal		point, optimal strategy and value of the
	value at more than one extreme points,	C	game, dominance, fundamental theorem
Sri. A. De	then every convex combination of these	U	of rectangular games, various methods
Assistant	extreme points also gives the optimal	Α	(algebric method, graphical method,
Professor	value of the objective function. If the		dominance principle and Simplex
	L.P.P. admits an optimal solution then at	Τ	method) of solving rectangular games.
	least one B.F.S. must be optimal.	I	
	Reduction of a F.S. to B.F.S.	Ι	
	Paper-IV, Group-A:Analytical	_	Paper-IV, Group-A:Analytical
	Dynamics of Particles:- Basic Concepts:	0	Dynamics of Particles :-Motion of a
	Particle and rigid body; frame of	_	particle in a plane: Expressions for
	reference, rest and motion, position	Ν	velocity and acceleration in cartesian
	vector, velocity and acceleration, mass,	1	and polar coordinates, expressions for
	force and Newton's laws of motion.		tangential and normal acceleration,
			equation of motion in cartesian (w.r.to
	Motion of a particle in one dimension:		fixed and rotation frames) and polar
	Rectilinear motion under constant and		coordinates, momentum (linear and
	variable forces, impulse and impulsive		angular), work, energy, conservative
	forces, linear momentum, kinetic energy,		forces, principle of conservation of
	work, power, conservative forces		linear momentum, angular momentum
	depending on position, potential energy		and energy. Central forces and central
	and principle of conservation of linear		orbits, motion under inverse square law
	momentum and energy, collision of elastic		(attractive and repulsive). Escape
	bodies, falling bodies including various		velocity. Planetary motion and Kepler's
	problems, motion under gravity with		laws, motion of an artificial satellite,

	resistance varying as integral powers of velocity. S.H.M. linearly damped oscillation, forced oscillations, damped forced oscillations, principle of superposition, strings and springs, varying mass problem, rockets and falling rain.	P U J	geo-stationary orbits, stability of nearly circular motion, disturbed elliptic orbit, constrained motion, simple and cycloidal pendulum, motion on rough curves (circle, parabola, ellipse, cycloid etc.) under gravity. Motion in resisting
	Paper-III, Group-B:Analytical	Å	medium. Projectiles in a resisting medium when resistance varies as an integral power of velocity. Paper-III, Group-B:Analytical
	Geometry of Three Dimensions:- Rectangular Cartesian co-ordinates in space, Concept of a geometric vector (directed lines segment). Projection of a		Geometry of Three Dimensions:- Straight line in space: its equation in symmetrical (canonical) and parametric forms. Direction ratio and direction
	vector on a co-ordinate axis, inclination of a vector with an axis, co-ordinates of a vector, direction cosines of a vector, distance between two points. Division of a directed line segment in a given ratio, the equation of a surface and the equation of a curve.	V	cosines, canonical equation of the line of intersection of two intersecting planes. Angle between two lines. Condition for Parallelism and perpendicularity of two straight lines, of a straight line and a plane, Equations of skew lines, Distance of a point from a straight line. Shortest
	Equation of plane: General, intercept and normal form. The sides of a plane, signed distance of a point from a plane. Equation of a plane passing through the intersection of two planes. Angle between two intersecting planes, bi-sectors of angle	A C A T	distance between two skew lines. Sphere, Cone, Cylinder. Surface of revolution, Ruled surface: study of their shapes and canonical equations. Enveloping cone and enveloping cylinder. Tangents, tangent planes, normals and generating lines of
Sri. S. Roy Assistant	between two intersecting planes, Parallelism and perpendicularity of two planes.	I O N	quadrics. Transformation of rectangular axes: translation, rotation and their combinations. General equation of second degree in three variables: reduction to canonical (normal) forms. Classification of quadrics and their
Professor			equation in canonical forms
	Paper-IV, Group-B:Analytical Statics: Friction: Laws of Friction, Angle of friction, Cone of friction. To find the positions of equilibrium of a particle lying on a (i) rough plane curve, (ii) rough surface under the action of any given forces.		Paper-IV, Group-B:Analytical Statics:- Stable and Unstable equilibrium. Co-ordinates of a body and of a system of bodies. Field of forces. Conservative field. Potential energy of a system. The energy test of stability. Condition of stability of equilibrium of
	Centre of Gravity: General formula for the determination of C.G. Determination of position of C.G. of any arc, area of solid of known shape by method of integration.	P U	a perfectly rough heavy body lying on fixed body. Rocking stones. Forces in three dimensions. Moment of a force about a line. Axis of a couple.
	Astatic Equilibrium, Astatic Centre. Positions of equilibrium of a particle lying on a smooth plane curve under action of	J A	Resultant of any two couples acting on a body. Resultant of any number of couples acting on a rigid body. Reduction of a system of forces acting
	given forces. Action at a joint in a frame	11	on a rigid body. Resultant force in an

work. Virtual work: Principle of virtual work for a single particle. Deduction of the conditions of equilibrium of a particle under coplanar forces from the principle of virtual work. The principle of virtual work for a rigid body. Forces which do not appear in the equation of virtual work. Forces which appear in the equation of virtual work. The principle of virtual work for any system of coplanar forces acting on a rigid body. Converse of the principle of virtual work.	V A C A T I	invariant of the system but the resultant couple is not an invariant. Conditions of equilibrium of a system of forces acting on a body. Deductions of the conditions of equilibrium of a system of forces acting on a rigid body from the principle of virtual work. Poinsot's central axis. A given system of forces can have only one central axis. Wrench, Pitch, Intensity and Screw. Condition that a given system of forces may have a single resultant. Invariants of a given system of forces. Equation of the central axis of a given system of forces.
Paper-IV, Group-C:DifferentialEquations-II:- Simultaneous differentialequation with constant coefficients up tosecond order.Power series solution of ordinarydifferential equation at an ordinary point.Partial differential equation: Introduction,formulation of P.D.E. Solution of firstorder linear P.D.E.: Lagrange's method1st Internal Assessment:2nd week of September 2017PTM-3rd Week of September	O N	Paper-IV, Group-C:DifferentialEquations-II:- Definition of Laplacetransform, Elementary properties ofLaplace transform, Laplace transform ofderivatives, Laplace transform ofintegrals, Formulae of inverse Laplacetransform, Statement of Convolutiontheorem, solution of G.D.E. up tosecond order wi.th constant coefficientusing Laplace transform.2 nd Internal Assessment:2 nd week of April 2018Students' Seminar-3 rd Week ofNovember

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2017-2018 B.Sc. Part-III (Honours)

Name of Faculty	Topic(From 10 th July 2017 to 16 th		Topic(From 31 st October 2017 to 28 th March
Members Dr. S. Manna Associate Professor Head Of The Department	September 2017) Paper-VI, Group-C: Discrete Mathematics :- Sets and Propositions: Cardinality, principle of inclusion and exclusion, connectives, Tautology and contradictions, equivalence formula. Graph Theory: Graphs: undirected graphs, Directed graphs, basic properties, complete graph, complement of a Graph.	P U J A	2018) Paper-VI, Group-C: Discrete Mathematics :- Bipartite Graphs, Necessary and Sufficient condition for a Bipartite Graph, Weighted Graphs, Walk, Path, Cycles, Circuit, Euler Graph, Konisberg Bridge Problem. Trees: Basic properties, spanning tree. Partial order relations and Lattices: Definitions of poset, lattice, chain and anti- chain, properties of a lattice, distributive lattice with properties. Discrete numeric functions and generating
	Paper-VI, Group-D: Mathematical Modeling:- Introduction, Basic steps of Mathematical modeling and its utility, preliminary concept of stability of differential equation.	V A C A	functions. Paper-VI, Group-D: Mathematical Modeling:- Mathematical models with their formulation, solution, interpretation and limitations (i)Single species models (Exponential and Logistic growth), (ii) Two species population models (Two competing species and Prey-prediator). Simple epidemic model (SI) with the formulation, solution, interpretation and limitations.
Sri. S. Sarkar Assistant Professor	 Paper-VII, Group-A: Elements of computer Science:- Elementary computers programming: Concepts of machine language, assembly language, different high level languages and compilers. Application of computer programming: Different steps of solving a problem by a Computer. Computer oriented algorithm. Flowchart. Boolean Algebra and applications:- Binary arithmetic: binary numbers, binary-to-decimal conversion, decimal-to- binary conversion, Addition, subtraction, multiplication and division of binary numbers, Algebra of sets. Definition of 	T I O N	 Paper-VII, Group-A: Programming Languages: Either FORTRAN 77 or ANSI C FORTRAN 77: Fixed and floating point modes, constants and variables, subscripted variables, arithmetic expression, library functions, statements, and arithmetic, input, output and control statements. Arithmetic assignment statement, GO TO, Arithmetic IF, Logical IF, BLOCK IF, DO, CONTINUE, READ, WRITE, PRINT, STOP, END, DIMENSION and FORMAT (List directed, I, E,F, X and H specification only). Two dimensional arrays, arithmetic statement, functions subprogram, subroutine subprogram. strings. ANSI C: Character set in ANSI C. Key words: if, while, do, for, int, char, float, etc. Data type: character, integer, floating point,

Boolean algebra by Huntington postulates, Two elements Boolean algebra and other examples, principle of duality, basic theorems, Boolean functions, truth table, disjunctive and conjunctive normal	P U	etc. Variables, Operators: □, □□, !, <>, etc. (arithmetic, assignment, relational, logical, increment, etc.). Expressions: arithmetic and logical expressions. Standard input/output. Use of while, if-else, for, do - while, switch,
forms, Theorem on construction of a Boolean function from a truth table and examples. Different binary operations and operators: AND, OR, NOT, NAND, NOR. Bistable devices, Logic gates-AND, OR,	J A	continue, etc. Arrays, strings, user defined function. Header File. The various problems on Mathematics are to be studied during programming in FORTRAN 77 or in C:
NOT, NAND, NOR (including block diagram and input-output table). Logic gates representations for Boolean expressions, Binary half adder and full adder. Paper-VIII, Group-D: Computer		Paper-VIII, Group-D: : Computer
Practical:- List of programs using FORTRAN or C General programs		Practical:- List of programs using FORTRAN or C Problems on strings (i)Counting of words in a string, (ii) Palindrome testing, (iii) Conversion from upper case to lower case
Area of circle, triangle, (ii) Summation of finite and convergent infinite series, (iii) Maximum and minimum among three number and n numbers, (iv)	C A T	and lower case to upper case to lower case and lower case to upper case, (iv) Sorting of names, (v) Rewrite name of a person in short form, (vi) searching a sub-string among a set of strings. Problems on Numerical Methods
Roots of a quadratic equation, (v) G.C.D. and L.C.M. between two integers, (vi) Testing of prime numbers, (vii) Split a number into digits, (vii) Computation of ${}^{n}P_{r}$ and	I O N	(i)Interpolation by Lagrange's and Newton forwards difference methods, (ii) Finding of roots by bisection, regula-falsi, fixed point iteration and Newton- Rapshon methods, (iii) Integration by trapezoidal and Simpson
${}^{n}C_{n}$ (viii) Searching and sorting (bubble sort only). Problems on matrices Addition and subtraction, (ii)	N	1/3 rule, (iv) Solution of a system of equations by Gauss-Siedal method, (v) Solution of a differential equation by Runge-Kutta methods.Problems on Statistical methods
Product, (iii) Trace and (iv) Transpose.		 (i)Preparation of grouped frequency table, (ii) Mean, median and mode for simple and grouped frequency distribution, (iii) Standard deviation, mean deviation, (iv) Moments, skewness and kurtosis, (v) Correlation and regression, (vi) Fitting of straight and parabolic curve.
Paper-VII, Group B: Mathematical Theory of Probability:- Concepts of mathematical probability, Random		Paper-VII, Group-B: Mathematical Theory of Probability:- Discrete and continuous distributions, probability distribution function, expectation, variance,
experiments, The idea of probability as a long run relative frequency. Sample space, mutually exclusive		moments of a random variable, basic ideas of moment generating function (m.g.f.) and characteristic function, dependent and

Sri. Abhoy De Assistant Professor	events, exhaustive events. Union of events, intersection of events, Kolmogorov's axiomatic definition of probability, classical definition as a special case of the axiomatic, theorems on the probability of the union of an events. Theorem of total probability, Boole's inequality, conditional probability, theorem of compound probability, theorem of inverse probability (Baye's theorem). Statistical independence of events, independent trials, random variables.	P U J A	independent trials. Bernoulli's trials, Binomial law, Joint distribution of two random variables and transformation of variables. Marginal and conditional distributions, Sum law and product law of expectation, two dimensional expectation and conditional expectation, Correlation and regression. Tchebycheff's inequality, convergence in probability, Bernoulli's limit theorem, weak law of large numbers. Central limit theorem (statement only). Poissons approximation to Binomial distribution, Normal approximation to Binomial distribution. Detailed understanding of hyper-geometric binomial, negative binomial and Poisson distributions and (b) rectangular, gamma, beta and normal distributions, x^2 and t distributions.
	Paper-VII, Group-C: Mathematical Statistics:- Collection of data, Tabulation and graphical representation of data, Qualitative and quantitative characteristics of discrete and continuous variables, Frequency table and its graphical representation. Measures of central tendency: mean (simple and weighted), median mode. Measures of dispersion: range, mean deviation and standard deviation, coefficient of variation, moments, skewness and kurtosis.	V A C A T I O	Alstributions.Paper-VII, Group-C: MathematicalStatistics:-Random sampling, samplingdistribution of a statistic. Samplingdistribution of a sample means (normalpopulation case) and sample proportion.Statistical inference. Point estimation of aparameter unbiased and consistent estimates.Method of maximum likelihood.Bivariate data, Scattered diagram, simplecorrelation and regression, curve fitting(linear and parabolic).Statistical hypothesis: Simple andcomposite, critical region of a test. Type-Iand Type- II error.Confidence interval and confidence
		N	coefficients: Confidence interval for a single variance (normal distribution), Neyman-Pearson theorem (statement only). Testing of Hypothesis (large and small sample, Normal distribution only).
	Paper-VIII, Group-A: Numerical Analysis:-Basic concepts: approximation of numbers, significant figures, absolute, relative and percentage errors, truncation and round off errors, accumulation and propagation of errors.		Paper-VIII, Group-A: Numerical Analysis:-Numerical integration: Newton's Cotes formulae, trapezoidal rule, Simpson's one- third rule and inherent errors, Weddle's rule, Summation of finite series by Euler- Maclaurin series (statement only).
	Polynomial interpolation and application: Lagrangian interpolation problem. Linear interpolation formula. Lagrange's	P U	Solution of equations (algebraic and transcendental) : Solution of a single equation by – Graphical method, Method of bisection,

	formula.	Т	Regula falsi method,
		J	Fixed point iteration method,
	Differences: Forward, backward and		Newton-Raphson method.
	divided difference tables, linear	A	Geometrical interpretation of these
	difference equations with constant		methods. Convergence of fixed-point
	coefficients. Newton's general		iteration and Newton-Raphson method.
	-		neration and Newton-Kapitson method.
	interpolation formula with		Cause elimination Cause Sindel method for
	remainder term, Newton's forward		Gauss-elimination, Gauss-Siedal method for
	and backward formulae, error in		the solution of a system of linear equations.
	these formulae. Numerical		Solution of differential equations: Solution
	differentiation based on Newton's		of a first order differential equation by
	forward and backward formulae.		Euler's method and modified Euler's
			method. Runga-Kutta (2nd and 4th order)
			methods (emphasizing the problem only)
		T 7	
	Paper-VI, Group-A:Rigid	\mathbf{V}	Paper-VI, Group-A: Rigid Dynamics:-
	Dynamics:- Moment and product of		Equations of motion of a rigid body moving
	inertia, Momental ellipsoid,	A	in two dimensions. Expression for kinetic
	Equimomental system, Principal		energy and angular momentum about the
	axis, D'Alembert's principle.	C	
			origin of a rigid body moving in two
	D'Alembert's equations of motion.	A	dimensions. Two dimensional motion of a
	Principles of moments, Principles of		solid of revolution down a rough inclined
	conservations of linear and angular	T	plane. Necessary and sufficient condition
	momentum. Independence of the	-	for pure rolling. Two dimensional motion of
	motion of centre of inertia and the	Ι	a solid of revolution moving on a rough
	motion relative to the centre of		horizontalplane.
	inertia. Principle of energy.	$\mathbf{\Omega}$	
	Principle of conservation of energy.	0	Equations of motion under impulsive
		NT	forces. Equation of motion about a fixed
	Equation of motion of a rigid body	Ν	axis under impulsive forces. Centre of
	about a fixed axis. Expression for		percussion. To show that (i) if there is a
	kinetic energy and moment of		definite straight line such that the sum of the
	momentum of a rigid body moving		moments of the external impulses acting on
	about a fixed axis. Compound		a system of particles about it vanishes, then
	-		the total angular momentum of the system
	pendulum. Interchangeability of the		about that line remains unaltered, (ii) the
	points of a suspension and centre of oscillation. Minimum time of		
			change of K.E. of a system of particles
	oscillation. Reaction of axis of		moving in any manner under the application
Sri. S. Roy	rotation.		of impulsive forces is equal to the work
Assistant Professor			done by the impulsive forces. Impulsive
		Ρ	forces applied to a rigid body moving in two
		▲	dimensions.
	Paper-VI, Group-B:	U	Paper-VI, Group-B: Hydrostatics:-
	Hydrostatics:-Definition of Fluid,	\cup	Equilibrium of fluids in given fields of
	Perfect Fluid, Pressure. To prove	J	force: Definition of field of force, line of
	that the pressure at a point in a fluid	J	force. Pressure derivative in terms of force.
	in equilibrium is the same in every	٨	Surface of equi-pressure. To find the
	direction. Transmissibility of liquid	A	necessary and sufficient conditions of
	pressure. Pressure of heavy fluids.		equilibrium of a fluid under the action of a
	To prove –		force whose components are X, Y, Z along
	In a fluid at rest under gravity the		the co-ordinate axes. To prove (i) that
	pressure is the same at all points in		surfaces of equal pressure are the surfaces
	Pressure is the sume of an points in		surraves of equal pressure are the surraves

the same horizontal plane. In a homogeneous fluid at rest under gravity the difference between the pressures at two points is proportional to the difference of their depths. In a fluid at rest under gravity horizontal planes are surfaces of equal density. When two fluids of different densities at rest under gravity do not mix, their surface of separation is a horizontal plane. Pressure in heavy homogeneous liquid. Thrust of heavy homogeneous liquid of plane surfaces. Definition of centre of pressure. Formula for the depth of the centre of pressure of a plane area. Position of the centre of pressure. Centre of pressure of a triangular area whose angular points are at different depths. Centre of pressure of a circular area. Position of the centre of pressure referred to co-ordinate axes through the centriod of the area. Centre of pressure of an elliptical area when its major axis in vertical or along the line of greatest slope. Effect of additional depth on centre of pressure.	V A C A T I O N	intersecting orthogo (ii) when the force so the surfaces of equal equipotential surface of equal density. To equations of the sur and density. Rotating fluids. To at any point and the pressure when a ma liquid contained in a uniformly about a v Thurst on Curved S The stability of the bodies. Definition, so of a floating body, n floatation, surface of propositions about so displacements. To d stability.
 Paper-VIII, Group-B:Real Analysis-III:- Real Valued functions defined on a subset (may not be an interval) of real numbers; limit of a real-valued function at a limit point of the domain (subset of <i>R</i>) of the functions, sequential and Cauchy's criteria for the existence of a limit of a function at a point. Algebra of limits in this context. Continuity of a function at a point on a subset of <i>R</i>, Sequential criteria for continuity at a point, continuity on a set. Algebra of continuous functions as a consequence of algebra of limits, continuity of composites of continuous functions. Uniform continuity on a set. If f is continuous on a closed and bounded subset of R, then f is uniformly 		Paper-VII, Group Sequence of function uniform convergence boundedness, contin and integrability of of uniform converge Series of functions: convergence, Cauch convergence, Cauch convergence, Bound of the sum function convergence. Term differentiation. Wei uniform and absolut Power series: Cauch Radius of convergence convergence of power related properties, un series. Fourier series. Dirice

intersecting orthogonally the fines of force. (ii) when the force system is conservative, the surfaces of equal pressure are equipotential surfaces and are also surfaces of equal density. To find the differential equations of the surfaces of equal pressure and density.

Rotating fluids. To determine the pressure at any point and the surfaces of equal pressure when a mass of homogeneous liquid contained in a vessel, revolves uniformly about a vertical axis. Thurst on Curved Surface.

The stability of the equilibrium of floating bodies. Definition, stability of equilibrium of a floating body, metacentre, plane of floatation, surface of buoyancy. General propositions about small rotational displacements. To derive the condition for stability.

Paper-VII, Group-B: Real Analysis-III:-Sequence of functions: Pointwise and uniform convergence, Cauchy's criteria for Uniform convergence, Weierstrass M-test, boundedness, continuity, differentiability and integrability of the limit function in case of uniform convergence. Series of functions: Pointwise and uniform convergence, Cauchy's criteria for uniform

convergence, Cauchy's criteria for uniform convergence, Boundedness and continuity of the sum function in case of uniform convergence. Term by term integration and differentiation. Weierstrass M- test for uniform and absolute convergence. Power series: Cauchy-Hadamard theorem, Radius of convergence, uniform convergence of power series and their related properties, uniqueness of a power series.

Fourier series. Dirichlet's condition of

continuous there. If f is uniform continuous on a subset of real m then it is uniformly continuous of closure of S.	umbers range series.
Paper-VIII, Group-C: Line Algebra-II:- Linear Transfor on Vector spaces: Definition, space, range space, rank and Sylvester's law.	II:- Linear Transformation on VectorNullspaces: Sylvester's law, simple
1 st Internal Assessment: 2 nd week of September 2017 PTM-3 rd Week of September	2 nd Internal Assessment: 2 nd week of March 2018 Students' Seminar-3 rd Week of November

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2017-2018 B.Sc. Part-I (General)

Name of faculty Members	Topic (From 10 th July 2017 to 16 th September 2017)	Topic (From 31 st October 201 to 26 th April 2018)
Dr. S. Manna Associate Professor Head Of The Department	Paper-I, Group-D: Vector Algebra:- Collinear and coplanar vectors, scalar and vector product of two vectors.	 Paper-I, Group-D: Vector Algebra: Scalar triple product of three vectors and its geometrical interpretation, simple application to geometry. Vector equations of straight lines and planes.
Sri. S. Sarkar Assistant Professor	Paper-I, Group-B: Modern Algebra: - Revision of Basic set theory, Cartesian product of two sets, Mappings, One-to- one and onto mappings, Composition of Mappings, Binary operation on a set. Group-definition and examples taken from various branches (examples from number system roots of unity, 2 x 2 real matrices, non-singular real matrices of a fixed order). Elementary properties using the definition of group. Definition and examples of sub groups, cyclic groups, permutation-even and odd permutation, group of permutation.	 J Paper-I, Group-B: : Modern Algebra:- Definition and examples of ring, sub-ring. Integral Domain. Division of zero. Every field is an integral domain. Field, sub-field. Characteristic equation of a square matrix of order not more than three, determination of Eigen values and Eigen vectors - problems only. Statement and illustration of Cayley - Hamilton theorem
Sri. A. De Assistant Professor	Paper-I, Group-A: Classical Algebra: De-Moivre's theorem and its applications. Exponential, Sine, Cosine and Logarithm of a complex number, definition of a^z ($a \neq 0$) and hyperbolic functions. Polynomials with real coefficients: Division algorithm, fundamental theorem of classical algebra (no proof required), n-th degree polynomial equation has exactly n roots. Nature of roots of an equation (surd or complex roots occur in pair). Statements of Descartes' rule of sign and its applications. Relations between roots and co-efficients, symmetric functions of roots, transformation of polynomial equation. Cardan's method of solution of a cubic	 Paper-I, Group-A: Classical Algebra:-Determinants: Properties, co-factors and minors, reduction of determinants, product of two determinants, adjoint and inverse of a determinant, symmetric and skew symmetric determinants. Matrices of real numbers: Equality of matrices, addition of matrices, multiplication of a matrix by a scalar. Multiplication of matrices- distributive, associative properties. Transpose of matrix-its properties. Square matrices. Symmetric, skew symmetric matrices, scalar matrices, identity matrix, inverse of a non- singular scalar matrix. Orthogonal matrix, rank of a matrix,

	equation, solution of biquadratic	determination of rank, solution of a
	equation by Ferrari's method.	P system of linear equations with not
	equation by Ferraris method.	more than three variables by matrix
	Dener I. Crear C. Arcaletical	U method (not involving ranks).
	Paper-I, Group-C: Analytical	Paper-I, Group-C: : Analytical
	Geometry of Two Dimensions:- Two dimensions: Polar equations of	J Geometry of Three Dimensions:-
	straight lines and circles, Polar equation	Three dimensions. Rectangular
	of a conic referred to a focus as pole,	Cartesian co-ordinates in space, the
	equations of chord; tangent and normal.	A concept of a geometric vector (free
	Transformations of rectangular axes:	vector). Projections of a vector on
	Translation, rotation and their	co-ordinate axes, Division of a line
	combinations. General equation of	segment in a given ratio, direction
	second degree in two variables and its	Cosines, and direction ratios of a
	reduction to canonical (normal) forms.	straight line. Angle between two
	Classification of conics and their	straight lines. Area of a triangle. The
	equations in canonical forms. Pairs of	A equation of a surface and the
Sri. S. Roy	straight-lines: Condition that the general	equation of a curve. Equation of a
Assistant Professor	equation of second degree may represent	C plane: General form, intercept and
	two straight lines. Point of intersection of	normal form, angle between two
	two intersecting straight lines, angle and	A planes, signed distance of a point from a plane. The straight line in
	angle bisectors between two lines given	A from a plane. The straight line in
	by $ax^2 + 2hxy + by^2 = 0$. Equations of two	space: Its equation in symmetric
	straight lines joining the origin to the	(canonical) and parametric forms.
	points in which line meets a conic.	Conditions for the parallelism and
		the perpendicularity of two planes,
		of two straight lines and of a straight
		line and a plane, Distance between
		U two skew straight lines, coplanarity
		of two straight lines. The sphere.
		N tangent and normal. The cone. The
		cylinder.
	1 st Internal Assessment:	2 nd Internal Assessment:
	2 nd week of September 2017	2 nd week of April 2018

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2017-2018 B.Sc. Part-II (General)

Name of Faculty	Topic (From 10 th July 2017 to 16 th		Topic (From 31 st October 2017 to 26 th
Members	September 2017)		April 2018)
Dr. S. Manna Associate Professor Head Of The Department	Paper-II, Group-A: Differential Calculus:-Concept of rational number, Irrational number, Real number. Sequence of numbers, concept of limit of a sequence, Null sequence, Bounded sequence, Monotonic sequence, supremum and infimum of a sequence; A convergent sequence is bounded and has a unique limit, Bounded and monotonic sequence is convergent. $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ Statement of the theorems on limits of sequence, Cauchy sequence, Statement of Cauchy's general principle of convergence, simple problem. Infinite series of constant term: Definition of convergence and divergence, Cauchy's convergence Principle (application only), Geometric series and p-series and their convergence (Only statement). Series of non-negative terms: Statement of comparison test. D' Alembert ratio test, Cauchy's nth root test and Raabe's test. Simple applications. Function of a single real variable defined on an interval, their graphs, Algebra of limits and continuity (no proof). Definition and acquaintance (no proof required) with the properties of continuous function on closed intervals, statement and existence of inverse function of a strictly monotonic function and its continuity. Derivatives - its geometric and physical interpretation, rule of differentiation (a revision of previous knowledge only). Differential its geometrical interpretation and application in finding approximations, relation between continuity and derivability.	PUJA VACATION	Paper-II, Group-A: Differential Calculus:-Successive derivatives, Leibnitz theorem: increasing and decreasing functions, sign of the derivatives, statement-of Rolle's Theorem and its geometrical interpretation. Mean value theorems of Lagrange's, its geometrical interpretation, Cauchy's mean value theorem. Taylor's and Maclaurin's theorems with Cauchy's and Lagrange's form of remainder (statement only). Expansion in power of <i>x</i> with infinite series for such functions as $exp(x)$, $sin(x)$, $cos(x)$, $(1+x)^n$, $log(1+x)$ (with restrictions wherever necessary). Indeterminate form, L'Hospital's rule, maxima and minima (Differentiations and acquaintance with rules of finding extreme, emphasis on solving problems only). Function of two variables, their geometrical interpretation, limit, repeated limit and continuity (definitions and examples only). Partial differentiation, knowledge of chain rules, Exact differential, Differentiation of implicit functions, successive partial derivatives, statement of Schawarz's theorem on the commutative property of mixed partial derivative, Euler's theorem on a homogeneous function of two variables. Applications: Problem on (i)Tangent and normals. (ii)Rectilinear asymptotes of algebraic curves, (iii)Curvature and radius of curvature of plane curves, (iv)Envelope of family of straight lines.

Sri. S. Sarkar Assistant Professor	Paper-III, Group-B: Numerical Analysis:-Polynomial interpolation and applications: Lagrangian interpolation problem. Linear interpolation formula. 	P U J A	Paper-III, Group-B: Numerical Analysis:- Numerical integration: Newton's-Cotes formula, trapezoidal rule, Simpson's one- third rule and inherent errors. Solution of equations (algebraic and transcendental) : Solution of a single equation by (i)Graphical method. (ii) Bisection method. (iii) Regula falsi method. (iv) Iteration method. (v) Newton-Raphson method. Geometrical interpretation of these methods. Convergence of Iteration- and Newton- Raphson method.
Sri. A. De Assistant Professor	Paper-III, Group-A:Linear Programming:-Inequation, definition of linear programming, problems bringing an objective function amongst set of constraints involving inequations. Formation of simple L.P. problems from day to day life, solution of L.P.P. by graphical method, linear dependence of vectors. Basic solutions and basic feasible solutions with reference to L.P.P., Degenerate and non-degenerate B. F. S., hyper-plane, convex set, extreme points, convex hyper-plane and statement of relevant theorems. Statement of the fundamental theorem of L.P.P.	VA	Paper-III, Group-A: Linear Programming:-Reduction of a F. S. to a B. F. S., Transformation of inequations to equations by slack and surplus variables. Simplex method (without proof), Feasibility and optimality conditions. The algorithm, simple application from daily life. Big-M method, Duality theory, The dual of the dual is primal. Definition of Transportation problem and assignment problem and their connection with L.P.P., algorithmic solution of T.P. and A.P. (no proof is required), simple applications.
	Paper-II, Group-B: Integral Calculus:- Indefinite Integration: Standard form, Methods by substitution and Integration by parts (Revision of previous knowledge). Integration of rational function and trigonometric function. Definite Integral as the limit of sum, Geometrical interpretation of definite Integrals of bounded continuous functions, Fundamental theorem of integral calculus, Properties of definite integral and their applications.	A T I O N	Paper-II, Group-B: Integral Calculus: - Reduction formula of $\int_0^{\frac{\pi}{2}} sin^m x dx$, $\int_0^{\frac{\pi}{2}} cos^n x dx$, $\int_0^{\frac{\pi}{2}} sin^m x cos^n x dx$, $\int_{0}^{\frac{\pi}{2}} tan^n x dx$ and associated problems (m and n are non- negatives).Definition of improper integrals, working knowledge of Beta and Gamma functions (convergence and important relations being assumed). Working knowledge of double and triple integrals, Jacobian. Application: Rectification (formation of intrinsic equations from cartesian and polar equation). Quadrature, Volumes and surface area of solids formed by revolution of curves and areas.

Sri. S. Roy	Paper-II, Group-C: DifferentialEquations:-First order linear and non-lineardifferential equations, application insimple geometrical problems.Second order linear differentialequations with constant coefficient,linear homogeneous second orderdifferential equations.		Paper-II, Group-C: Differential Equations:- Simultaneous linear differential equation with constant coefficients up to second order. Simple Eigen value problems
Assistant Professor	Paper-III, Group-C: Analytical Dynamics:- Impulse and impulsive forces, work, power and energy, principles of conservation of energy and momentum, collision of elastic bodies (loss of K.E. to be calculated in the case of direct of impact only).	V A C A T	Paper-III, Group-C: Analytical Dynamics:- Motion in a straight line under variable forces, damped, forced and damped forced vibration, motion under inverse square law. Velocity and accelerations of a panicle in cartesian and polar co- ordinates. Tangential and normal accelerations, circular motion. Motion in a plane, equations of motion in cartesian and polar coordinates, central orbits, escape velocity.
	1 st Internal Assessment: 2 nd week of September 2017		2 nd Internal Assessment: 2 nd week of April 2018

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2017-2018 B.Sc. Part-III (General)

Name of Faculty Member	Topic(From 10 th July 2017 to 16 th September 2017)	Topic(From 31 st October 2017 to 28 th March 2018)
Sri. S. Sarkar	Paper-IV, Group-A: Elements of Computer Science:-	Paper-IV, Group-A: : Elements of Computer Science:- Applications of computer
Assistant Professor	Computers and their functions and programming:	P programming: Different steps of solving a problem by a computer.
	Computers and their function: Information processing. History of data processing machines. Digital Computer, components and their functions and interactions input: storage, control, arithmetic logic and output systems, analogy between the working of a clerk and computer, analog and digital computers. Punched cards and different input / output media applications computers. Elementary Computers Programming: Concepts of machine language, assembly language, different higher level languages and compilers, Fixed and floating point models, constants and variables, subscripted variables, arithmetic expression, Library functions, FORTRAN - 77 : Statements, arithmetic, input, output and control statements. Arithmetic IF, Logical IF, BLOCK IF, DO, CONTINUE, READ, WRITE, PRINT, STOP, END, DIMENSION and FORMAT (List directed, I, E, F, X ,and H specification only). Two dimensional arrays, Date cards.	 Computer oriented algorithm. Flow-chart. Writing on a coding sheet and computer programmes in FORTRAN for the solution of simple computational problems including problems: Evaluation of functions, Solutions of quadratic equation, Determination of the approximate sum of convergent infinite series sorting. Finite set of numbers in ascending and descending order, Solution of equations by iteration and Newton-Raphson method, Numerical integration by Simpson's one third rule. Boolean Algebra and Applications: Binary arithmetic-binary numbers, binary-to-decimal conversion. Addition, Subtraction, Multiplication and Division of binary numbers. Definition of Boolean algebra by Huntington postulates. Two element Boolean algebra and other examples. Principle of Duality. Basic theorems, Boolean functions. Truth table, Disjunctive and conjunctive normal forms. Theorems on construction of a Boolean function from a truth table and examples. Different binary operations and operators. AND, OR, NOT, NAND, NOR. Bistable devices, Logic Gates-AND, OR, NOT, NAND, NOR (including block diagram and input-output table).
		Logic Gates representations for Boolean expressions.

Sri. A. De Assistant Professor	Paper-I, Group-B: Elements of Probability Theory: Random experiments, Statistical regularity and idea of probability as long run mutually exclusive event and exhaustive events, union, Intersection and complement, classical definition of probability, axiomatic approach of probability theory (detailed treatment not required), theorem on the union of a number of events, conditional probability, theorem of total probability and Bayes' theorem, independent event and independent trials, random variable and its probability distribution, expectation and variance. Joint, marginal and conditional distribution.	P U J A V A C A T I	Paper-I, Group-B: Elements of Statistics: Qualitative and quantitative characters. Discrete variable and continuous variable, frequency distribution and its graphical representation, measures of central tendency (mean median and mode), measures of dispersion (range, mean deviation and standard deviation), Skewness and Kurtosis, moments and β_1 and β_2 coefficients. Binomial, Poisson and normal distribution. Correlation and regression. Estimation of parameters, maximum likelihood method, interval estimation.
	1 st Internal Assessment:	O	2 nd Internal Assessment:
	2 nd week of September 2017	N	2 nd week of March 2018